

Summary of APEX, Modeling, Developments Session

M. Bai, T. Satogata

Presentations

- APEX
 - Overview of APEX, RUN 06
 - Linear optics
 - Emittance issues
 - E-clouds
 - Beam-beam issues
 - Operational feedback
 - Tune ripple
- Modeling
 - Model status and plans
 - Ramp designer for the future

APEX summary: Fulvia

- Status of APEX
 - Overview of the time usage of APEX
 - Reminded:
 - goal of the APEX, organization(committee, website ...)
 - · Current mode: fixed 12h session/weekly
 - Disscussions on
 - Scattered mode
 - A mix of the two
- Overview of the beam studies during RUN06
- APEX for RUN07
 - Annual APEX workshop: end of Sept.

Linear Optics: Mei, Todd

- ORM data and ac dipole data were taken during the
- Emittance control
 - Critical for run 06
 - Prevent shorter bunches

Linear Optics: Mei, Todd

gradient errors as a function of quad index in the fitting. They are at most 10 percent of the quadrupole strengths themselves

the average of d(KL) is about zero -- the ORM fit is not trying to compensation for a tune difference between measurement and model.

Plans

- Shutdown
 - complete the data analysis or ORM and ac dipole data
 - · ORM:
 - Compare corrected yellow injection/store lattices to measured opt
 - » Include BPM and corrector gain errors in fits
 - » Include coupling
 - » Fit more quads in yellow store analysis; understand why full-ring fit

becomes singular. Fix yellow tune matching for store ORM.

- » Analyze Blue store data from May 30
- » Analyze May 30 data for both rings with averaged orbits
- » Analyze AGS data with Matlab LOCO
- Ac dipole: understand the linear optics dependence on the coherent size
- Comparison of the two methos
- Design gradient error correction scheme
- With beam
 - Dedicated beam time
 - · Gradient error measurement methods
 - test the gradient error correction scheme

Emittance: Vadim

- Observations
 - Emittance growth at injection
 - · During injection: injection kicker timing
 - Conitnuous growth: no specific smoking gun though did find the correlation with the bunch length. E-cloud could be another candidate(?)
 - Emittance growth during ramp
 - · IPM data.
 - Growth seems only during the energy ramp and carrys a similar shape with the bunch length during ramp.
 - · No obvious candidate. E-cloud?
 - Emittance growth at store
 - E-Cloud
 - · Beam-beam
- Emittance control
 - Critical for run 06
 - Prevent shorter bunches

Emittance: Vadim

- Comparison of emittance measurements with different tools of IPM, CNI polarimeter, Vernier scan, Schottky
 - IPM/CNI close to 1.0, vernier scan shows much larger beam size
 - No correlation with the bunch length: eliminate the hour glass
 - Working progress

E-Cloud: SY

- $EC \rightarrow$ dynamic pressure rise
- Comarison of RUN05 and RUN06
 - the emittance growth seems to agree with the pressure rise pattern: ECloud
 - Improvement of pressure rise not only the locations with NG pipes but also other areas
- For Run07:
 - an additional 150m NG pipe for yellow

Long range beam-beam: Wolfram

- No problem now. Could be a problem for >120 bunches
- Test bed for LHC and eRHIC...
- · Found a setup which allows measurable effects

Long range beam-beam: Wolfram

· Plan to install the wire compensator in 2006 summe

Modeling: Nikolay

Bring RHIC online model to AGS environment

Conditions:

- Live machine settings.
- Dif. orbit with single corrector kick (C08)
- Snakes = drifts.

Results:

- Good orbit agreement.
- Large tune difference (model-measured)

$$\bullet dQx = -0.03$$

•
$$dQy = 0.01$$

• UAL agrees with MAD-X to ~1.5e-3.

AGS and RHIC Models

Next Step

☐ RHIC OrbitCalc applications

- Merging the RhicOrbitDisplay application with the OrbitCalc library and extensions
- Automating the orbit correction before cogging by extending the RHIC Sequencer with the OrbitCalc-based application.

□ AGS Extraction model

• Refining the AGS extraction model (gradients, etc) and horizontal and vertical optics based on the orbit response matrix (ORM) measurements.

☐ AGS Injection model

- Reconsidering the cold snake bump optimization based on the analysis of snake models calculated with the different initial orbits.
- the AGS injection vertical optics based on the orbit response material (ORM) measurements.

Ramp Designer: Tepikian

- Overview the currently what are involved for designing a ramp
 - Many scripts
 - A lot of manunal edittings/manipulations
 - Beta* fitting routine
 - Leave room for mistakes
- Ramp Designer applications
 - Provide basic functionalities that the current scripts have
 - Involve the OptiCalc+Matching for beta* fitting
 - Incooperate the limits(current as well as ramping rate) for individual powersupplies
 - Expert tool

Ramp Designer: Tepikian

Fitting will use the *Model library* for the expected operating conditions (γ_{τ} quads, crossing angles, etc) to produce a *table* quadrupole strengths versus accramp time.

- Source
 - Main dipole
 - Quadrupole
 - Beam-beam
- Experiment
 - Use ac quadrupole
- All 3 systems
 - 1st priority is to use common software analysis
- LF
 - eliminate labview in link
 - mux control directly from Schottky manager
 - need reliable BPM "zero'ing" (always on)
- HF
 - keep labview for data collection only
 - analysis will be done in manager

still under development.

Tune/decoupling feedback: Pete Cameron

- Dynamic Range done
 - ~180dB (or more) required
 - solution Direct Diode Detection (3D) AFE
- Coupling done
 - drives tune feedback loop unstable
 - solution continuous coupling measurement and feedback
- 90 degree phase jumps in the works
 - digitizer clock loses synchronization
 - solution fit phase to chirped BTF
 - Laster's phase jump correction amplitude fitting
- Mains Harmonics in the works?
 - direct excitation of betatron resonance by high harmonics of power supply frequencies
 - mechanism is not yet understood
 - amplitude is ~70dB above 3D AFE noise floor during ramping
 - solution??? just live with it?
- Chromaticity in the works
 - modifies Beam Transfer Function portion of overall loop gain affects system stability, tracking ability,...
 - solution continuous chromaticity measurement and feedback
 - BBQ is more sensitive to chromaticity than 245MHz PLL

- HF Schottky
 - No changes from last year
 - New emittance calibration tested in run06
 - continue software analysis development
- LF Schottky
 - Swept frequency analyzer performs well.
 - Initial new signal analysis tested and works well. Needs further work.
 - eliminate the Labview link.
- Tune ripple experiment
 - Require BBQ for 10⁻⁵ resolution

- · both rings at store
- · Provide a carrier
 - generate coherent betatron line by locking BBQ
 - BBQ bandwidth must be less than mod frequency
 ~51Hz
- Modulate the tune with AC quadrupole
 - mod frequency ~51Hz
 - mod depth ~1.38x10-4 p-p tune units
- Phase demodulate using DSA
- · Compare results with calculation

A

Tune Ripple Measurement

Future?

- Tune modulation damper using ac-quadrupole
 - HERA used feedback system for tune modulation compensation (to reduce beam losses due to beam-beam resonances)
 Bruning & Willeke, Phys. Rev. Letters, V.76,n20
 - current ac-dipole strength at 100 GeV is around $dQ\sim1.4\times10^{-4}$ p-p (10 amp).
 - to avoid emittance growth from BBQ ping, could consider feedforward system (open-loop).
- Not an easy exercise, but feasible. 1st need to understand what needs to be corrected.

